महर्षि पिंगल का जन्म लगभग 400 ईसा पूर्व का माना जाता है । कई इतिहासकार इन्हें महर्षि पाणिनि का
छोटा भाई मानते है | महर्षि पिंगल उस समय के महान लेखकों में एक थे । इन्होने छन्दःशास्त्र (छन्दःसुत्र)
की रचना की ।
छन्दःशास्त्र आठ अलग अलग अध्यायों में विभक्त है |
आठवे अध्याय में पिंगल ने छंदों को संक्षेप करने तथा उनके वर्गीकरण के बारे में लिखा ।
तथा द्विआधारीय रचनाओं को गणितीय रूप में लिखने के बारे में बताया ।
तथा इनके छंदों की लम्बाई नापने के लिए वर्णों की लम्बाई या उसे उच्चारित (बोलने) में लगने वाले समय
के आधार पर उसे दो भागों में बांटा :- गुरु (बड़े के लिए) तथा लधु (छोटे के लिए) |
इसके लिए सर्व प्रथम एक पद (वाक्य) को वर्णों में विभाजित करना होता है विभाजित करने हेतु निम्न
नियम दिए गये है :
1. एक वर्ण में स्वर (vowel) अवश्य होना चाहिए तथा इसमें अवश्य केवल एक ही स्वर होना चाहिए|
2. एक वर्ण सदैव व्यंजन से प्रारंभ होना चाहिए परन्तु वर्ण स्वर से प्रारंभ हो सकता है केवल यदि वर्ण
लाइन के प्रारंभ में हो |
3.किसी वर्ण को हो सके उतना अधिक दीर्घ बनाना चाहिए ।
4.जो वर्ण छोटे स्वर से अंत होता है (अ इ उ आदि ) उसे लघु तथा बाकि सारे गुरु कहे जाते है अर्थात जिस
किसी वर्ण के पीछे कोई मात्रा न हो वो लघु (Light) तथा मात्रा वाले गुरु(Heavy) कहे जाते है जैसे : मे, री
आदि
उदहारण के लिए :
त्वमेव माता च पिता त्वमेव
इस श्लोक को उपरोक्त वर्णन के आधार पर विभाजित किया गया है
त्व मे व मा ता च पि ता त्व मे व
L H L H H L L H L H L
त्वमेव बन्धुश्च सखा त्वमेव
त्व मे व बन् धुश् च स खा त्व मे व
L H L H H L L H L H L
बन्धु को विभक्त करते समय आधे न (न्) को ब के साथ रखा गया है (बन्) क्योंकि तीसरा नियम कहता है
"किसी वर्ण को हो सके उतना अधिक दीर्घ बनाना चाहिए" तथा बन् को साथ रखने पर दूसरा नियम भी
सत्य होता है चूँकि बन् लाइन के आरंभ में नही है इसलिए व्यंजन से प्रारंभ होना अनिवार्य है |
और प्रथम नियम भी बन् में सत्य हो रहा है क्योकि ब में अ(स्वर) है |
धुश् में भी प्रथम तथा तृतीय नियम सत्य होते है |
आधे वर्ण में अंत होने वाले वर्ण जैसे : बन् धुश् गुरु की श्रेणी में आएंगे |
लघु और गुरु को क्रमश: "|" और "S" (ये अंग्रेजी वर्णमाला का S नही है) से भी प्रदर्शित किया जाता है |
इस प्रकार उपरोक्त चार नियमो द्वारा किसी भी श्लोक आदि को द्विआधारीय रचना में लिखा जा सकता है |
ये तो हुई बात लघु और गुरु की |
अब बात आती है इन्हें उचित स्थान देने की ।
यदि हमारे पास 4 वर्ण है |तो इसके द्वारा हम 16 प्रकार के संयोजन (combinations) बना सकते है
जिसमे प्रत्येक का स्थान महत्व रखता है |
आगे पिंगल ने उसी के सन्दर्भ में एक मैट्रिक्स दी जिसका नाम था : प्रस्तार |
प्रस्तार मैट्रिक्स को बनाने के लिए पिंगल ने मात्र एक ही सूत्र दिया :
एकोत्तरक्रमश: पूर्वप्र्क्ता लासंख्या - छन्दःशास्त्र 8.23
इस एक ही सूत्र से मैट्रिक्स की रचना को जानना अत्यंत कठिन था | कदाचित पिंगल के अतिरित 8 वी
सदी तक इसके सन्दर्भ को कोई समझ नही पाया |
परन्तु 8 वी सदी में केदारभट्ट ने पिंगल के छन्दःशास्त्र पर कार्य किया और इस पहेली को सुलाझा लिया
इनके ग्रन्थ का नाम वृतरत्नाकर है इसके पश्चात त्रिविक्रम द्वारा १२वीं शती में रचित तात्पर्यटीका तथा
हलायुध द्वारा १३वीं शती में रचित मृतसंजीवनी में उपरोक्त सूत्र को और भी बारीकी से प्रस्तुत किया गया। ये
सभी छन्द:शास्त्र के ही भाष्य है |
वृतरत्नाकर में केदार द्वारा वर्णित थ्योरी का अध्यन कर IIT कानपूर के प्रध्यापक हरिश्चन्द्र वर्मा जी ने एक
फ्लो चार्ट तैयार किया जो इस प्रकार है :
प्रथम चरण: हमें सारे B (big/गुरु) लिखने है जितने हमारे वर्ण है | यदि वर्ण तिन है तो संयोजन 3*3=9
बनेंगे यदि 4 है तो 16 बनेंगे|
हम 4 वर्ण लेकर चलते है संयोजन बनेंगे 16.
4 वर्ण के लिए 4 बार B लिखना है :
BBBB
द्वितीय चरण:
हमें left to right चलना है लेफ्ट में प्रथम B है तो दुसरे चरण में उसके निचे लिखे S और बाकि सारे वर्ण
ज्यों के त्यों लिख दें|
SBBB
तृतीय चरण :
अब उपरोक्त प्रथम है S तो अगली पंक्ति में उसके निचे B लिखें जब तक B न मिल जाये | और B मिलते ही
S लिखें और बचे हुए वर्ण ज्यों के त्यों लिख दें|
BSBB
इस प्रकार उपरोक्त फ्लो चार्ट के अनुसार चलने पर हमें 16 संयोजनों की टेबल प्राप्त होगी |
SSBB
BBSB
SBSB
BSSB
SSSB
BBBS
SBBS
BSBS
SSBS
BBSS
SBSS
BSSS
SSSS
अंत में सारे S प्राप्त होने पर रुक जाएँ|
उपरोक्त टेबल में B गुरु के लिए, S लघु के लिए है|
कंप्यूटर जगत 0 1 पर कार्य नही करता अपितु सर्किट के किसी कॉम्पोनेन्ट/भाग में विधुत धारा है अथवा
नही पर कार्य करता है | आधुनिक विज्ञान में धारा होने को 1 द्वारा तथा नही होने को 0 द्वारा प्रदर्शित किया
जाता है | 0 1 केवल हमारे समझने के लिए है कंप्यूटर के लिए नही| इसलिए 0 1 के स्थान पर यदि low
high, empty full , small big, no yes अथवा लघु और गुरु कहा जाये तो कोई फर्क पड़ने वाला नही|
कंप्यूटर जगत के जानकर उपरोक्त वर्णन को अच्छे से समझ गये होंगे|
इसके अतिरिक्त पिंगल ने द्विआधारीय संख्याओं को दशमलव (binary to decimal), दशमलव से
द्विआधारीय (decimal to binary) में परिवर्तित करने, मेरु प्रस्तार (पास्कल त्रिभुज), और द्विपद प्रमेय
(binomial theorem) हेतु कई सूत्र दिए जिसे केदार, हलयुध आदि ने अपने ग्रंथों में पुनः विस्तृत रूप से
लिखा|
बिलकुल यही खोज हमारे western भाई साहब Gottfried Wilhelm Leibniz ने पिंगल से लगभग 1900
वर्ष पश्चात की |
http://www.bsgp.org/
http://www.allempires.com/
http://en.wikipedia.org/wiki/
http://
अधिक जानकरी के लिए निम्न विडियो 34.40 मिनट तक काट कर आगे से देखें :
https://www.youtube.com/
No comments:
Post a Comment
All the postings of mine in this whole forum can be the same with anyone in the world of the internet. Am just doing a favor for our forum users to avoid searching everywhere. I am trying to give all interesting informations about Finance, Culture, Herbals, Ayurveda, phycology, Sales, Marketing, Communication, Mythology, Quotations, etc. Plz mail me your requirement - amit.knp@rediffmail.com